Efficient Approach for Rhopalocera Classification Using Growing Convolutional Neural Network

Author:

Kaur Iqbaldeep1,Goyal Lalit Mohan2,Ghansiyal Adrija3ORCID,Hemanth D. Jude4

Affiliation:

1. Department of Computer Science, CGC, Landran, Mohali, India

2. Department of Computer Engineering, J C Bose University of Science and Technology, YMCA, Faridabad, India

3. WPB Insurance IT, HSBC Technology India, Pune, India

4. Department of ECE, Karunya Institute of Technology and Sciences, Coimbatore, India

Abstract

In the present times, artificial-intelligence based techniques are considered as one of the prominent ways to classify images which can be conveniently leveraged in the real-world scenarios. This technology can be extremely beneficial to the lepidopterists, to assist them in classification of the diverse species of Rhopalocera, commonly called as butterflies. In this article, image classification is performed on a dataset of various butterfly species, facilitated via the feature extraction process of the Convolutional Neural Network (CNN) along with leveraging the additional features calculated independently to train the model. The classification models deployed for this purpose predominantly include K-Nearest Neighbors (KNN), Random Forest and Support Vector Machine (SVM). However, each of these methods tend to focus on one specific class of features. Therefore, an ensemble of multiple classes of features used for classification of images is implemented. This research paper discusses the results achieved from the classification performed on basis of two different classes of features i.e., structure and texture. The amalgamation of the two specified classes of features forms a combined data set, which has further been used to train the Growing Convolutional Neural Network (GCNN), resulting in higher accuracy of the classification model. The experiment performed resulted in promising outcomes with TP rate, FP rate, Precision, recall and F-measure values as 0.9690, 0.0034, 0.9889, 0.9692 and 0.9686 respectively. Furthermore, an accuracy of 96.98% was observed by the proposed methodology.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3