LEARNING RULES FOR ODOUR RECOGNITION IN AN ELECTRONIC NOSE

Author:

MCCOY STEPHEN A.1,MARTIN TREVOR P.2,BALDWIN JAMES F.2

Affiliation:

1. Modelling & Reasoning Research Group, Department of Computer Science, Loughborough University, Loughborough, Leics. LE11 3TU, UK

2. AI Group, Department of Engineering Mathematics, University of Bristol, Queen's Building, University Walk, Bristol, BS8 1TR, UK

Abstract

The problem of automating the sensing and classification of odours is one which promises a wide range of industrial applications. During the INTESA project, a prototype electronic nose was developed, using sensors based on novel conducting polymer materials and also more traditional MOS materials. The software component of the prototype processes the transient resistance change signals recorded by the hardware, and classifies the odour sample into one of a number of "odour classes". This paper describes two of the soft computing methods investigated for learning classification rules in this domain. The first method builds on previous work done on the Fril data browser, using clustering, fuzzy matching, Fril rules and evidential logic rules. The second method uses a fuzzy extension of the ID3 decision tree induction method, called "mass assignment tree induction (MATI)". Some of the results of applying these methods to data obtained from the INTESA prototype are presented and discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. METHODS OF TESTING IN ODOR ANALYSIS;Handbook of Odors in Plastic Materials;2023

2. METHODS OF TESTING IN ODOR ANALYSIS;Handbook of Odors in Plastic Materials;2017

3. METHODS OF TESTING IN ODOR ANALYSIS;Handbook of Odors in Materials;2013

4. Intelligent Fish Freshness Assessment;Journal of Sensors;2008

5. Intelligent Processing of E-nose Information for Fish Freshness Assessment;2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3