A New Fuzzy Propagation Model for Influence Maximization in Social Networks

Author:

Aliahmadipour Laya1,Valipour Ezat2

Affiliation:

1. Department of Computer Science, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran

2. Department of Applied Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

In this paper we introduce a fuzzy propagation model to deal with the influence maximization (IM) problem. The IM problem for the most of existing propagation model is NP-hard. Here, we model social networks as fuzzy directed graphs to propose an application-oriented propagation process. To this aim, we investigate an interesting relationship between zero forcing set concept in graphs and IM problem in social networks. In spite of its attractive theory, its implementation is not efficient in the real world. Thus, we improve the fuzzy zero forcing set concept and suggest our fuzzy propagation model, simultaneously. Moreover, we present a polynomial time complexity algorithm to solve IM problems under the proposed propagation process. In particular, we consider a propagation parameter to control the size of the seed set and its coverage. Also, experimental results on some real world social networks show that the propagation model finds optimal and flexible seed set.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3