Deep Learning and Neural Network-Based Wind Speed Prediction Model

Author:

Mohammed Ahmed Salahuddin1ORCID,Mohammed Amin Salih23,Kareem Shahab Wahhab4

Affiliation:

1. Department of Information Technology, College of Engineering and Computer Science, Lebanese French University, Erbil, KRG, Iraq

2. Department of Software and Informatics Engineering, Salahaddin University-Erbil, KRG, Iraq

3. Department of Computer Engineering, College of Engineering and Computer Science, Lebanese French University, Erbil, KRG, Iraq

4. Department of Information Systems Engineering, Erbil Technical Engineering College, Erbil Polytechnic University, KRG, Iraq

Abstract

This paper aims to develop a wind speed prediction model by utilizing deep learning and neural networks. The analysis of weather data using a neural network architecture has been completed. The Long Short-Term Memory (LSTM) architecture is a type of artificial Recurrent Neural Network (RNN) used in deep learning is the first method plots the predicting Wind Speed based on the dataset and predicts the future spread. A dataset from a real-time weather station is used in the implementation model. The dataset consists of information from the weather station implements of the recurrent neural network model that plots the past spread and predicts the future stretch of the weather. The performance of the recurrent neural network model is presented and compared with Adaline neural network, Autoregressive Neural Network (NAR), and Group Method of Data Handling (GMDH). The NAR used three hidden layers. The performance of the model is analyzed by presenting the Wind Speeds of Erbil city. The dataset consists of the Wind Speed of (1992-2020) years, and each year consist of twelve months (from January to December).

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3