Improved Meta-Heuristic Model for Text Document Clustering by Adaptive Weighted Similarity

Author:

Venkanna Gugulothu1,Bharati K. F.2

Affiliation:

1. Research Scholar, JNTUA Ananthapuramu, Department of Computer Science and Engineering, Sreenidhi Institute of Science and Technology, Yamnampet, Ghatkesar Hyderabad – 501 301, India

2. Department of Computer Science and Engineering, JNTUA College of Engineering (Autonomous), Ananthapuramu Sir Mokshagundam Vishveshwariah Road, Anantapur, Andhra Pradesh 515002, India

Abstract

This paper intends to develop a novel framework for text document clustering with the aid of a new improved meta-heuristic algorithm. Initially, the features are selected from the text document by subjecting each word under Term Frequency-Inverse Document Frequency (TF-IDF) computation. Subsequently, centroid selection plays a vital role in cluster formation, which is done using a new Improved Lion Algorithm (LA) termed as Cross over probability-based LA model (CP-LA). As a novelty, this paper introduced a new inter and intracluster similarity model. Moreover, this centroid selection is made in such a way that the proposed adaptive weighted similarity should be minimal. Based on the characteristics of the document, the weights are automatically adapted with the similarity measure. The proposed adaptive weighted similarity function involves the inter-cluster, and intra-cluster similarity of both ordered and unordered documents. Finally, the superiority of the proposed over other models is proved under different performance measures.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3