Lioness Adapted GWO-Based Deep Belief Network Enabled with Multiple Features for a Novel Question Answering System

Author:

Moholkar Kavita1,Patil S. H.2

Affiliation:

1. Bharti Vidyapeeth (Deemed to be University), Pune, Maharashtra 411030, India

2. College of Engineering, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra 411030, India

Abstract

Recently, the researches on Question Answering (QA) systems attract progressive attention with the enlargement of data and the advances on machine learning. Selection of answers from QA system is a significant task for enhancing the automatic QA systems. However, the major complexity relies in the designing of contextual factors and semantic matching. Motivation: Question Answering is a specialized form of Information Retrieval which seeks knowledge. We are not only interested in getting the relevant pages but we are interested in getting specific answer to queries. Question Answering is in itself intersection of Natural Language Processing, Information Retrieval, Machine Learning, Knowledge Representation, Logic and Inference and Semantic Search. Contribution: Feature extraction plays a major role for accurate classification, where the learned features get extracted for enhancing the capability of sequence learning. Optimized Deep Belief network model is adopted for the precise question answering system, which could handle both objective and subjective questions. A new hybrid optimization algorithm known as Lioness Adapted GWO (LA-GWO) algorithm is introduced, which mainly concentrates on high reliability and convergence rate. This paper intends to formulate a novel QA system, and the process starts with word embedding. From the embedded results, some of the features get extracted, and subsequently, the classification is carried out using the hybrid optimization enabled Deep Belief Network (DBN). Specifically, the hidden neurons in DBN will be optimally tuned using a new Lioness Adapted GWO (LA-GWO) algorithm, which is the hybridization of both Lion Algorithm (LA) and Grey Wolf optimization (GWO) models. Finally, the performance of proposed work is compared over other conventional methods with respect to accuracy, sensitivity, specificity, and precision, respectively.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application Analysis of English Personalized Learning Based on Large-scale Open Network Courses;Scalable Computing: Practice and Experience;2024-01-04

2. BamnetTL: Bidirectional Attention Memory Network with Transfer Learning for Question Answering Matching;International Journal of Intelligent Systems;2023-08-03

3. Python Automatic Question Answering System Based on Deep Learning;Lecture Notes on Data Engineering and Communications Technologies;2023

4. Optimization Algorithm of Power Marketing AI Response System in the Era of Intelligent Technology;2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC );2022-10-03

5. Application of BP Neural Network in Matching Algorithm of Network E-Commerce Platform;Journal of Sensors;2022-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3