Vectorized Kernel-Based Fuzzy C-Means: a Method to Apply KFCM on Crisp and Non-Crisp Numbers

Author:

Hossein-Abad Hadi Mahdipour1,Shabanian Mohsen2,Kazerouni Iman Abaspur1

Affiliation:

1. Electrical Engineering Department, Esfarayen University of Technology, Esfarayen, North Khorasan, Iran

2. Electrical Engineering Department, Salman Farsi University of Kazerun, Kazerun, Fars, Iran

Abstract

Kernel methods are a class of algorithms for pattern analysis to robust them to noise, overlaps, outliers and also unequal sized clusters. In this paper, kernel-based fuzzy c-means (KFCM) method is extended to apply KFCM on any crisp and non-crisp input numbers only in a single structure. The proposed vectorized KFCM (VKFM) algorithm maps the input (crisp or non-crisp) features to crisp ones and applies the KFCM (with prototypes in feature space) on them. Finally the resulted crisp prototypes in the mapped space are influenced by an inverse mapping to obtain the prototypes’ (centers’) parameters in the input features space. The performance of the proposed method has been compared with the conventional FCM and KFCM and other new methods, to show its effectiveness in clustering of gene expression data and segmentation of land-cover using satellite images. Simulation results show good accuracy of proposed method in compare to other methods.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3