Affiliation:
1. Dpto. Computer Science and Artificial Intelligence, University of Granada, Granada, 18071, Spain
Abstract
Given a set of uncertain discrete variables with a joint probability distribution and a set of observations for some of them, the most probable explanation is a set or configuration of values for non-observed variables maximizing the conditional probability of these variables given the observations. This is a hard problem which can be solved by a deletion algorithm with max marginalization, having a complexity similar to the one of computing conditional probabilities. When this approach is unfeasible, an alternative is to carry out an approximate deletion algorithm, which can be used to guide the search of the most probable explanation, by using A* or branch and bound (the approximate+search approach). The most common approximation procedure has been the mini-bucket approach. In this paper it is shown that the use of probability trees as representation of potentials with a pruning of branches with similar values can improve the performance of this procedure. This is corroborated with an experimental study in which computation times are compared using randomly generated and benchmark Bayesian networks from UAI competitions.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Information Systems,Control and Systems Engineering,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献