Affiliation:
1. Department of Statistical Sciences, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
Abstract
A linear regression model for imprecise random variables is considered. The imprecision of a random element has been formalized by means of the LR fuzzy random variable, characterized by a center, a left and a right spread. In order to avoid the non-negativity conditions the spreads are transformed by means of two invertible functions. To analyze the generalization performance of that model an appropriate prediction error is introduced, and it is estimated by means of a bootstrap procedure. Furthermore, since the choice of response transformations could affect the inferential procedures, a computational proposal is introduced for choosing from a family of parametric link functions, the Box-Cox family, the transformation parameters that minimize the prediction error of the model.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Information Systems,Control and Systems Engineering,Software
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献