An Efficient Approach for Mining Weighted Approximate Closed Frequent Patterns Considering Noise Constraints

Author:

Yun Unil1,Yoon Eunchul2

Affiliation:

1. Department of Computer Engineering, Sejong University, Seoul, South Korea

2. Department of Electronics Engineering, Konkuk University, Seoul, South Korea

Abstract

Based on the frequent pattern mining, closed frequent pattern mining and weighted frequent pattern mining have been studied to reduce the search space and discover important patterns. In the previous definition of weighted closed patterns, supports of patterns are only considered to compute the closures of the patterns. It means that the closures of weighted frequent patterns cannot be perfectly checked. Moreover, the usefulness of weighted closed frequent patterns depends on the presence of frequent patterns that have supersets with the exactly same weighted support. However, from the errors such as noise, slight changes in items' supports or weights by them have significantly negative effects on the mining results, which may prevent us from obtaining exact and valid analysis results since the errors can break the original characteristics of items and patterns. In this paper, to solve the above problems, we propose a concept of robust weighted closed frequent pattern mining, and an approximate bound is defined on the basis of the concept, which can relax requirements for precise equality among patterns' weighted supports. Thereafter, we propose a weighted approximate closed frequent pattern mining algorithm which not only considers the two approaches but also suggests fault tolerant pattern mining in the noise constraints. To efficiently mine weighted approximate closed frequent patterns, we suggest pruning and subset checking methods which reduce search space. We also report extensive performance study to demonstrate the effectiveness, efficiency, memory usage, scalability, and quality of patterns in our algorithm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3