On Hastings' Counterexamples to the Minimum Output Entropy Additivity Conjecture

Author:

Brandão Fernando G. S. L.12,Horodecki Michał3

Affiliation:

1. Institute for Mathematical Sciences, Imperial College London, London SW7 2BW, UK

2. QOLS, Blackett Laboratory, Imperial College London, London SW7 2BW, UK

3. Institute for Theoretical Physics and Astrophysics, University of Gdańsk, 80–952 Gdańsk, Poland

Abstract

Hastings recently reported a randomized construction of channels violating the minimum output entropy additivity conjecture. Here we revisit his argument, presenting a simplified proof. In particular, we do not resort to the exact probability distribution of the Schmidt coefficients of a random bipartite pure state, as in the original proof, but rather derive the necessary large deviation bounds by a concentration of measure argument. Furthermore, we prove non-additivity for the overwhelming majority of channels consisting of a Haar random isometry followed by partial trace over the environment, for an environment dimension much bigger than the output dimension. This makes Hastings' original reasoning clearer and extends the class of channels for which additivity can be shown to be violated.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Average Rényi entropy of a subsystem in random pure state;Quantum Information Processing;2024-01-27

2. Gelfand–Tsetlin polytopes and random contractions away from the limiting shape.;Annales de la Faculté des sciences de Toulouse : Mathématiques;2023-08-29

3. Generic Nonadditivity of Quantum Capacity in Simple Channels;Physical Review Letters;2023-05-18

4. Subtleties in the trainability of quantum machine learning models;Quantum Machine Intelligence;2023-05-15

5. Concentration estimates for random subspaces of a tensor product and application to quantum information theory;Journal of Mathematical Physics;2022-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3