Modeling dynamics and stability analysis of pneumonia disease infection with parameters uncertainties control

Author:

Mumbu Abdulrahman12

Affiliation:

1. Department of Mathematics, Muslim University of Morogoro, P. O. Box 1031, Morogoro, Tanzania

2. Department of Mathematics, University of Dar-es-Salaam, P. O. Box 35091, Dar-es-salaam, Tanzania

Abstract

In this work, a mathematical model of six compartments is formulated, showing the dynamic flow of pneumonia disease in the human population with treatment and vaccination interventions. Equilibria points and stability analyses were carried out using the Lyapunov function approach. Analytically, it is found that at the disease-free equilibrium state, local and global asymptotic stability behaviors are achieved when [Formula: see text] with instability if [Formula: see text]. However, at the endemic equilibrium point, asymptotic stability is attainable if [Formula: see text] and instability otherwise. The study indicates that pneumonia disease infection is successfully reduced when treatment and vaccination interventions are administered to the patients. The work also proposes an adaptive sliding mode control approach with a closed-loop control system to manage pneumonia epidemic model uncertainties. This approach intends to reduce disease transmission and infection through successful tracking of defined trajectories and managing uncertainties. For the control rates [Formula: see text], the technique managed to track the disease carriers and infectious agents accurately even in the presence of parameter uncertainties. In conclusion, an increase in the control rates [Formula: see text] in the existence of parameter uncertainty control systems significantly reduces the number of disease transmitters and infectious agents quicker than in their absence. Hence, this study signifies the pivotal role of treatment and vaccination in the control of pneumonia infection as well as the control of parameter uncertainties by the proposed method.

Funder

Norwegian Agency for Development Cooperation

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3