Dynamics and optimal harvesting of prey–predator in a polluted environment in the presence of scavenger and pollution control

Author:

Zawka Simon D.1ORCID,Melese Temesgen T.1

Affiliation:

1. Department of Mathematics, College of Natural and Computational Sciences, Arba Minch University, P. O. Box 21, Arba Minch, Ethiopia

Abstract

This paper is concerned with the dynamics and optimal harvesting of a prey–predator system in a polluted environment in the presence of scavengers and pollution control. Toxicants, released from external sources and the dead bodies of prey and predators, pollute the environment, which affects the growth of both prey and predators, resulting in a decline in the economic revenue from harvest. We assume that scavengers reduce pollution by consuming dead bodies. Further, we consider pollution reduction through depollution efforts as an alternative to enhancing revenue. We propose and analyze a prey–predator–pollutant model and study the optimal harvesting problem. We investigate the persistence of the ecosystem, and we solve the optimal harvest problem using Pontryagin’s maximum principle. The results indicate that uncontrolled prey harvesting and a high rate of pollution drive the system toward the extinction of both species. A moderate amount of pollution and the reasonable harvest efforts allow the system to persist. The optimal harvest strategy highlights that investing in pollution reduction enhances the persistence of the system as well as economic revenue. Numerical examples demonstrate the significant outcomes of the study.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3