Analytical descriptions of quantifier solutions to interval linear systems of relations

Author:

Sharaya Irene A.12ORCID,Shary Sergey P.12ORCID

Affiliation:

1. Federal Research Center for Information and Computational Technologies, Novosibirsk, Russia

2. Novosibirsk State University, Novosibirsk, Russia

Abstract

We study systems of relations of the form [Formula: see text], where [Formula: see text] is a vector of binary relations with the components “[Formula: see text]”, “[Formula: see text]”, and “[Formula: see text]”, while the parameters (elements of the matrix [Formula: see text] and right-hand side vector [Formula: see text]) are uncertain and can take values from prescribed intervals. What is considered to be the set of its solutions depends on which logical quantifier is associated with each interval-valued parameter and what is the order of the quantifier prefixes for specific parameters. For solution sets that correspond to the quantifier prefix of a general form, we present equivalent quantifier-free analytical descriptions in the classical interval arithmetic, in Kaucher complete interval arithmetic and in the usual real arithmetic.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3