Seismic Responses and Collapse of a RC Pedestrian Cable-Stayed Bridge: Shake Table Tests

Author:

Zheng Yue12,Xu You-Lin2,Zhan Sheng2

Affiliation:

1. Department of Bridge Engineering, Tongji University, Shanghai, P. R. China

2. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, P. R. China

Abstract

There have been numerous experimental studies on the seismic collapse of reinforced concrete (RC) buildings and RC girder bridges, but not on the seismic collapse of RC pedestrian cable-stayed bridges. Postearthquake field investigations revealed that if RC pedestrian cable-stayed bridges in seismic regions were not appropriately designed, they are likely to encounter severe damage or collapse. This paper thus presents an experimental investigation on a 1:12 scaled RC pedestrian cable-stayed bridge to explore the seismic behavior and collapse mechanism of the bridge under different levels of ground motion. The design, construction, and installation of the bridge, along with the shake table tests, were performed. The dynamic characteristic tests of the bridge were carried out, with the natural periods and mode shapes identified. The bridge was then tested by subjecting it to three levels of ground motion, i.e. small, moderate and large earthquakes. The seismic behavior and seismic-resistant capacity of the cable-stayed bridge were finally assessed at the component level and the failure mode of the bridge was identified based on the seismic responses recorded by the measurement system. The test results showed that the collapse of the RC pedestrian cable-stayed bridge was triggered from the flexure failure of its columns and ended with the flexure-shear failure of its tower.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3