Seismic Control of a Self-Anchored Suspension Bridge Using Fluid Viscous Dampers

Author:

Feng Dongming1,Wang Jingquan1

Affiliation:

1. School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, P. R. China

Abstract

A self-anchored suspension bridge balances forces internally without external anchorage requirements, making it suitable for sites where anchorages would be difficult to construct. It often adopts either a full-floating or a semi-floating tower-girder connection system, which may result in large displacement responses along bridge longitudinal direction during earthquakes. This study investigated the efficacy of using the fluid viscous damper (FVD) for seismic control of a single-tower self-anchored suspension bridge. First, the energy dissipation behaviors of the FVD under sinusoidal excitations were studied. It revealed that besides the damper parameters (i.e. damping coefficient and velocity exponent) of an FVD itself, the energy dissipation capacity also relies on the characteristics of external excitations. Therefore, optimum damper parameters added to a structure should be determined on a case-by-case basis. Parametric study was then carried out on the prototype bridge, which indicated a tendency of decreasing the longitudinal deck/tower displacements and tower forces with increasing damping coefficient [Formula: see text] and decreasing velocity exponent [Formula: see text]. Compared with the linear FVD, the nonlinear FVD with a smaller velocity exponent can develop more rectangular force-displacement loops and thus achieve better energy dissipation performance. With selected optimum damper parameters (i.e. [Formula: see text][Formula: see text]kN[Formula: see text]m[Formula: see text][Formula: see text]s[Formula: see text] and [Formula: see text]) for the two FVDs added between the deck and the tower, the longitudinal deck and tower displacements could be reduced by 54%, while the peak bending moment and shear force at the tower base could be reduced by 30% and 19%, respectively. It is concluded that the nonlinear FVD can provide a simple and efficient solution to reduce displacement responses of self-anchored suspension bridges while simultaneously reducing the bending moment and shear force in the tower.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3