MODELING THE EFFECT OF VAN DER WAALS ATTRACTION ON THE INSTABILITY OF ELECTROSTATIC CANTILEVER AND DOUBLY-SUPPORTED NANO-BEAMS USING MODIFIED ADOMIAN METHOD

Author:

SOROUSH RAHMAN1,KOOCHI ALI2,KAZEMI ASIEH SADAT3,ABADYAN MOHAMADREZA4

Affiliation:

1. Engineering Group, Lahijan branch, Islamic Azad University, Lahijan, Iran

2. Engineering Group, Naein branch, Islamic Azad University, Naein, Iran

3. Engineering Group, Bojnourd branch, Islamic Azad University, Bojnourd, Iran

4. Engineering Group, Chaloos branch, Islamic Azad University, Chaloos, Iran

Abstract

A nano-scale continuum model is applied to investigating the effect of van der Waals (vdW) attraction on pull-in instability of nano-beams in the presence of electrostatic forces. Two cases including the cantilever and doubly-supported beams are considered. The modified Adomian decomposition (MAD) method is employed to solve the nonlinear constitutive equation of nano-beams in the presence of vdW and electrostatic forces for the first time. The results show that the effect of vdW attraction on the instability of the doubly-supported nano-beam is weak when compared to that of the cantilever due to the higher elastic stiffness of the former. Basic design parameters such as the critical deflection and pull-in voltage of the nano-beam are computed. The minimum initial gap and the detachment length of an actuator that does not stick to the substrate due to intermolecular attractions are determined. As a special case, the instability of freestanding nano-electromechanical systems (NEMS) due to vdW attraction is investigated. The MAD solutions are compared with the numerical ones and a proposed lumped model, as well as models available from the literature.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3