Dynamic Buckling of Thermo-Electro-Mechanically Loaded FG-CNTRC Beams

Author:

Yang Jie1,Ke Liao-Liang2,Feng Chuang1

Affiliation:

1. School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia

2. Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044, P. R. China

Abstract

Functionally graded carbon nanotube reinforced nanocomposites have drawn great attention in both research and engineering communities. The weak interfacial bonding between carbon nanotubes and the matrix, which traditionally hinders the application of carbon nanotube reinforced nanocomposites, can be remarkably improved through the graded distribution of carbon nanotubes in the matrix. Within the framework of classical beam theory, this paper investigates the dynamic buckling behavior of functionally graded nanocomposite beams reinforced by single-walled carbon nanotubes and integrated with two surface bonded piezoelectric layers. The governing equations of the beam subjected to an applied voltage, a uniform temperature and an axial periodic force are derived by applying Hamilton's principle. Numerical results are presented for beams with different distribution patterns and volume fractions of carbon nanotubes and end support conditions. The influences of the beam geometry, temperature change, applied voltage, static axial force component, boundary condition, carbon nanotube volume fraction and its distribution on the unstable regions of FG-CNTRC piezoelectric beams are discussed in detail.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3