Optimization of Pre-Tensioning Cable Forces in Highly Redundant Cable-Stayed Bridges

Author:

Asgari Banafsheh1,Osman Siti Aminah1,Bin Adnan Azlan2

Affiliation:

1. Department of Civil & Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600 Selangor, Malaysia

2. Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia

Abstract

Cable-stayed bridges have been developing rapidly in the last decade and have become one of the most popular types of long-span bridges. One of the important issues in the design and analysis of cable-stayed bridges is determining the pre-tensioning cable forces that optimize the structural performance of the bridge. Appropriate pre-tensioning cable forces improve the damaging effect of unbalanced loading due to the deck dead load. Because the cable-stayed structure is a highly undetermined system, there is no unique solution for directly calculating the initial cable forces. Numerous studies have been conducted on the specification of cable pre-tensioning forces for cable-stayed bridges. However, most of the proposed methods are limited in their ability to optimize the structural performance. This paper presents an effective multi-constraint optimization strategy for cable-stayed bridges based on the application of an inverse problem through unit load method (ULM). The proposed method results in less stresses in the bridge members, more stability and a shorter simulation time than the existing approaches. The finite element (FE) model of the Tatara Bridge in Japan is considered in this study. The results show that the proposed method successfully restricts the pylon displacement and establishes a uniform deck moment distribution in the simulated cable-stayed bridge; thus, it might be a useful tool for designing other long-span cable-stayed bridges.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3