Affiliation:
1. Department of Civil Engineering and Architecture, ICIST/IST, Technical University of Lisbon Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Abstract
This paper is concerned with the development and application of a Generalized Beam Theory (GBT) formulation to analyse the local and global buckling behavior of thin-walled steel plane and space frames with arbitrary loadings and various support conditions. This formulation takes into account the geometrical effects stemming from the presence of longitudinal normal stress gradients and also the ensuing pre-buckling shear stresses. Following a description of the main concepts and procedures involved in determining the finite element and frame linear and geometric stiffness matrices (incorporating the influence of joints, applied loading and support conditions), one presents and discusses some numerical results concerning the local and global buckling behavior of (i) simple "L-shaped" frames and (ii) space frames formed by two symmetrical portal frames joined through a transverse beam. For validation purposes, the GBT-based results are compared with those obtained by rigorous shell finite element analyses using ANSYS. An excellent correlation, for both the critical buckling loads and mode shapes, is found in all cases.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献