BUCKLING ANALYSIS OF CRACKED COLUMN STRUCTURES AND PIEZOELECTRIC-BASED REPAIR AND ENHANCEMENT OF AXIAL LOAD CAPACITY

Author:

WANG Q.1,CHASE J. G.2

Affiliation:

1. Department of Civil Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore

2. Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand

Abstract

Decreased flexural and buckling capacity of composite structures due to the development of fatigue cracks is a serious issue in a variety of fields. This paper discusses the buckling capacity and piezoelectric material enhancement of cracked column structures. A model of the rotational discontinuity at the crack location is used to develop analytical buckling solutions and the effect of crack location and intensity on the buckling capacity of the damaged columns is investigated. Small piezoelectric patches are employed to induce local moments to compensate for the decreased buckling capacity of column structures, using a mechanical model coupled with piezoelectric strain-voltage relations. The voltages required to enhance the buckling capacity are analytically determined and the general relationship between crack location and voltage developed. The primary advantage of the piezoelectric-based repair approach presented is the ability to use a single small patch, with different applied voltages, to repair cracks of a wide variety of depths, intensities and locations passive design solutions would require custom designs to restore the axial load capacity for each case.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3