Affiliation:
1. Faculty of Civil and Environmental Engineering Technion, Israel Institute of Technology, Haifa 32000, Israel
Abstract
In this work, a new method is used for the exact vibration analysis of plates with classical boundary conditions. Four classical edge conditions are included: C — clamped, S — Simply supported, F — free, and G — guided. For square plates, all the possibilities add up to 55 cases. The solutions for the natural frequencies of the plates are found in this paper using static analysis. Starting from the equations of motion of an isotropic rectangular thin plate supported on Winkler elastic foundation, with a positive or negative value, the solution for the vibration frequencies of the plate is equivalent to finding the values of the negative elastic foundation that will yield infinite deflection under a point load on the plate. The solution is composed of three parts, the sum of which satisfies exactly both the field equation and the boundary conditions. For zero force, the vibration frequencies are found up to the desired accuracy. Benchmark results of the first six normalized natural frequencies, of isotropic square plates, for all possible 55 combinations of classical boundary conditions are given, many for the first time.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献