Affiliation:
1. University of Rijeka, Faculty of Engineering, Department of Engineering Mechanics, Vukovarska 58, HR-51000 Rijeka, Republic of Croatia
Abstract
This work presents a one-dimensional finite element formulation for nonlinear analysis of spaced framed structures with thin-walled cross-sections. Within the framework of updated Lagrangian formulation, the nonlinear displacement field of thin-walled cross-sections, which accounts for restrained warping as well as the second-order displacement terms due to large rotations, the equations of equilibrium are firstly derived for a straight beam element. Due to the nonlinear displacement field, the geometric potential of semitangential moment is obtained for both the torsion and bending moments. In such a way, the joint moment equilibrium conditions of adjacent non-collinear elements are ensured. Force recovering is performed according to the external stiffness approach. Material nonlinearity is introduced for an elastic-perfectly plastic material through the plastic hinge formation at finite element ends and for this a corresponding plastic reduction matrix is determined. The interaction of element forces at the hinge and the possibility of elastic unloading are taken into account. The effectiveness of the numerical algorithm discussed is validated through the test problem.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献