FREE VIBRATION OF FUNCTIONALLY GRADED PLATES WITH A HIGHER-ORDER SHEAR AND NORMAL DEFORMATION THEORY

Author:

JHA D. K.1,KANT TARUN2,SINGH R. K.3

Affiliation:

1. Architectural and Civil Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

2. Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India

3. Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

Abstract

Free vibration analysis of functionally graded elastic, rectangular, and simply supported (diaphragm) plates is presented based on a higher-order shear and normal deformation theory (HOSNT). Although functionally graded materials (FGMs) are highly heterogeneous in nature, they are generally idealized as continua with mechanical properties changing smoothly with respect to the spatial coordinates. The material properties of functionally graded (FG) plates are assumed here to be varying through the thickness of the plate in a continuous manner. The Poisson ratios of the FG plates are assumed to be constant, but their Young's modulii and densities vary continuously in the thickness direction according to the volume fraction of constituents which is mathematically modeled as a power law function. The equations of motion are derived using Hamilton's principle for the FG plates on the basis of a HOSNT assuming varying material properties. Numerical solutions are obtained by the use of Navier solution method. The accuracy of the numerical solutions is first established through comparison with the exact three-dimensional (3D) elasticity solutions and the present solutions are then compared with available solutions of other models.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3