Affiliation:
1. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
Abstract
Currently, four grouped 177 m super-large cooling towers, i.e. column-supported hyperboloidal shells, are to be constructed in a typical electric power plant in Southeast China. To this end, simultaneous pressure measurements on 1:200 rigid tower models are carried out in an atmospheric boundary layer (ABL) wind tunnel, aimed at accurately obtaining the external/internal cladding wind loads on these shells. The wind-induced static behavior of the cooling towers is analyzed by applying the wind loads acquired via the pressure model tests, using both linear elastic and nonlinear elastic finite element (FE) analyses. The corresponding responses (structural deformation, internal force and local buckling state) are compared with those obtained by the traditional design approach, focused on the effects of internal suction and external pressure distribution. Besides, the tower group interference effects are studied by comparing the results computed of a freestanding tower, with those of the tower groups during two different construction stages. The main findings about the loading effects on the static performance of the super-large cooling towers are helpful for improving the current Chinese Codes that govern the design of super-large cooling towers.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献