Minimization of vibration power transmission from rotating machinery to a flexible supporting plate

Author:

Niu B.1,Olhoff N.1

Affiliation:

1. Department of Mechanical and Manufacturing Engineering, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg East, Denmark

Abstract

This paper deals with the problem of optimum design of a foundation for rotating machinery with a view to minimize vibration transmission from a machine source to its supporting structure. The problem of analysis and optimization of the installation systems of machinery has been extensively researched on the assumption of a rigid supporting structure. The design based on a rigid supporting structure model is reasonable for the installation of machinery in many real engineering situations. However, this rigid support based model may not be appropriate for the problem studied herein where the machinery is to be installed on a relatively flexible supporting plate. Thus, a generalized mathematical model of mobility power flow is developed in this paper, with a rotating machine as vibration source, resilient mounts as isolator, and a flexible supporting plate as receiver. The objective of minimizing vibration transmission is realized by optimization of stiffness coefficients of resilient mounts with a constraint on the vibration level of the machine. The design objective is chosen as the minimization of the power flow transmitted to the flexible supporting plate through the resilient mounts at the excitation frequency of the machinery. Both a single excitation frequency and a range of excitation frequencies are considered. A gradient-based mathematical programing method is selected for its advantage of efficiently solving the current type of optimization problem with multiple mounts and multi-degree-of-freedom vibration transmission. The sensitivities of the objective and the constraint functions with respect to the design variables are derived analytically. The design and performance of the optimized machinery foundation is illustrated and discussed using several numerical examples. The optimized mounting system is suitable for the installation case of a rotating machine with a low or medium service speed on a flexible supporting plate structure.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic theory and experimental testing in ipsilateral offset dual-motor excitation system;Transactions of the Canadian Society for Mechanical Engineering;2024-06-01

2. Active vibration control of a shaft bracket-plate coupled system;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2021-07-22

3. Study on low vibration isolator arrangement of marine gearboxes based on an impedance model;Transactions of the Canadian Society for Mechanical Engineering;2020-12-01

4. CIMA: Compiler-Enforced Resilience Against Memory Safety Attacks in Cyber-Physical Systems;Computers & Security;2020-07

5. Power transmission and suppression characteristics of stiffened Mindlin plate under different boundary constraints;Archive of Applied Mechanics;2019-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3