Development of a New Fence Type Blast Wall for Blast Protection: Numerical Analysis

Author:

Zong Ruiqing1,Hao Hong23,Shi Yanchao4

Affiliation:

1. School of Civil Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China

2. Tianjin University-Curtin University Joint, Research Center of Structural Monitoring and Protection, 92 Weijin Road, Tianjin 300072, P. R. China

3. School of Civil and Mechanical Engineering, Curtin University, Perth, WA 6845, Australia

4. Key Laboratory of Coast Civil Structure Safety, Ministry of Education, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China

Abstract

Blast wall is considered to be an effective passive measure for blast protection since it can effectively reduce the blast loads and protect the building structures and people behind it. However, the current practice in blast wall design mainly depends on the structural strength and ductility to resist blast loads. These designs often lead to huge solid walls which are not only expensive, but also unsuitable for construction in urban areas, as they are not aesthetically appealing. Moreover, failure of solid blast wall may generate a significant amount of debris, which imposes great threats to people and structures behind the wall. In this paper, a new fence type blast wall, instead of the solid wall, is proposed to resist the blast loads based on the concept of wave interference. The proposed fence wall uses structural columns placed at strategic locations as wave stoppers to generate wave reflection, diffraction and interaction between the reflected and diffracted waves from different columns to result in self-cancellation of wave energy, thus leads to substantial reduction in blast wall size in design. Numerical simulations are carried out to investigate the effectiveness of the fence wall layout with different column geometries, column spacing, column dimensions, and fence layers on blast loads reduction. Based on the results, an effective design of the fence type blast wall is proposed, which can reduce the pressure and impulse of the blast loads behind the wall upto 70%.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3