Collapse Behavior of Tensegrity Barrel-Vault Structures Based on Di-Pyramid (DP) Units

Author:

Mirzaaghazadeh K.1,Abedi K.1,Shekastehband B.2

Affiliation:

1. Faculty of Civil Engineering, Sahand University of Technology, Tabriz, Iran

2. Faculty of Civil Engineering, Urmia University of Technology, Urmia, Iran

Abstract

In this study, the collapse behavior of a family of tensegrity structures, i.e. di-pyramid (DP) barrel-vaults that can offer promising solutions for civil engineering applications is analyzed. Depending on whether struts’ snap or cables’ rupture dictate the occurrence of overall collapse, two different designs are considered. The effects of geometric parameters, self-stress properties, loading type, boundary conditions and strengthening schemes on the structural behavior are discussed. It is found that the structures with symmetric and ridge loading types undergo bifurcation type instability instead of limit point which is encountered in the cases with asymmetric loading type. Constraint against lateral thrust is beneficial in improving strength and initial stiffness of the studied cases, by as much as 60% and 90%, respectively. In most cases, the rate of strength variation associated with increasing self-stress levels is quite slow, while the slackness load increases by at least 400% being the primary achievements. By using non-uniform self-stress distribution, the initial stiffness of these structures can be increased up to 240%. Increasing the rise-to-span ratio improves the initial stiffness and collapse strength of the structure significantly at the expense of expedition of cables slackness. Significant gains in collapse resistance of these structures under symmetric loading are obtained with strengthened critical struts or cables, depending on which collapse case dominates, but the initial stiffness is generally not influenced by these schemes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3