Finite Element Analysis Framework for Dynamic Vehicle-Bridge Interaction System Based on ABAQUS

Author:

Lu Xuzhao1,Kim Chul-Woo1,Chang Kai-Chun1

Affiliation:

1. Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto 615-8540, Japan

Abstract

This paper presents a unified framework for dynamic analysis of vehicle-bridge interaction (VBI) systems using a commercial finite element software suite (ABAQUS[Formula: see text]). This framework can provide bridge designers and engineering practitioners with a general platform to analyze the coupled system with high modeling efficiency and accuracy in modeling and outputting. Moreover, it has readily available nonlinear material/element models and nonlinear dynamic analysis functions for complex structures. This analysis framework was first validated with a classical VBI problem involving a sprung mass moving on a simply supported beam, whose closed-form solution is readily available. Validation for the application on complex structure was then presented with a typical 16-car Japanese high-speed train (Shinkansen) and a three-block bridge. The cars comprised car bodies, bogies and wheelsets, which were all modeled as rigid bodies and which were connected with springs and dashpots. The bridge was modeled with typical three-dimensional solid elements. Interaction between wheelsets and tracks was realized using the penalty method. Rail irregularity was also considered in the analysis. The consistency between calculated dynamic responses and field experiment data of certain pre-specified observation points validated the proposed method. Furthermore, ease in analyzing VBI problems involving nonlinear material properties and with high spatial resolutions was demonstrated with a classical cracked beam problem: a point mass moving on a simply supported cracked beam. Both linear and nonlinear crack models were employed. The former model assigned crack surfaces with a mechanical contact property and showed its accuracy in comparison to the reference model. The latter assigned a nonlinear material model in crack-prone zones and illustrated the potential applicability to dynamic crack propagation simulation in VBI problems. The present framework was further applied to seismic response analysis of a train-bridge interaction system involving material nonlinearity and separation between track and wheel under a strong earthquake.

Funder

China Scholarship Council

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3