Passive Winglet Control of Flutter and Buffeting Responses of Suspension Bridges

Author:

Phan Duc-Huynh1

Affiliation:

1. Faculty of Civil Engineering, HCMC University of Technology and Education, Vietnam

Abstract

The passive control using winglets has been considered to be an alternative solution for control of flutter and buffeting responses of long suspension bridges. This method is aimed at not only developing lightweight, reduced-cost stiffening girders without adding stiffness for aerodynamic stability, but also avoiding problems from malfunctions caused by the control and energy supply systems of active control devices by winglets. This paper presented a mechanically controlled approach using the winglets, for which a two-dimensional bridge deck model was numerically and experimentally studied. In addition, numerical research on the flutter and buffeting passive control of a 3000[Formula: see text]m span suspension bridge was carried out. The result showed that the flutter speed of the suspension bridge increases, whereas the buffeting response decreases, through the implementation of the winglets.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the cybersecurity of smart structures under wind;Journal of Wind Engineering and Industrial Aerodynamics;2024-08

2. Stability in Parametric Resonance of a Controlled Stay Cable with Time Delay;International Journal of Structural Stability and Dynamics;2024-01-05

3. Flutter Control Mechanism of Dual Active Aerodynamic Flaps with Adjustable Mounting Distance for a Bridge Girder;Structural Control and Health Monitoring;2024-01

4. Flutter Control of Active Aerodynamic Flaps Mounted on Streamlined Bridge Deck Fairing Edges: An Experimental Study;Structural Control and Health Monitoring;2023-02-16

5. Three-Dimensional Effect of Feedback Controlled Winglets in Flutter Suppression of Suspension Bridge;International Journal of Structural Stability and Dynamics;2022-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3