Affiliation:
1. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University Shanghai 200092, P. R. China
2. School of Civil Engineering, Chang’an University, Xi’an 710061, P. R. China
Abstract
With the development of high-speed railways, the double-line mode of ballastless tracks is being adopted increasingly worldwide. In some sections where subgrades need to be laid, this type of line mode is also applied above the subgrade, thus forming double-line track-subgrade structure. In this structure, the subgrade on one side of the double-line is subjected to the eccentric pressure of the load when the unidirectional train is running (the most common operating condition in actual operation). When the subgrade contains embankment layer, the complexity of the problem is increased. Therefore, a 1:4 scale test model of the double-line ballastless track-subgrade system was constructed in this paper in order to study the dynamic responses of the double-line track-subgrade structure with embankment layer under the unidirectional high-speed train loads. By considering the similarity of shear wave velocities, a new uniform dynamic similarity method was adopted to design the track, subgrade and foundation models. The effects of a series of sine waves with 1–30[Formula: see text]Hz excitation frequency and three kinds of loading modes on the speed, soil stress and acceleration response of the track and subgrade were systematically investigated. The relationship between the effective composite values of velocity beneath the track and the depth was finally obtained. The results show that the dynamic stress attenuation of the subgrade bottom layer under larger axle loads are relatively faster. It is found that the dynamic stress attenuation of the subgrade bottom layer is relatively fast under the high-frequency uniform excitation of large axial heavy load.
Funder
National Basic Research Program of China
Fundamental Research Funds for the Central Universities, CHD
Natural Science Foundation of Shaanxi Province
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献