Stochastic Analysis of Vehicle-Bridge Coupled Interaction and Uncertainty Bounds of Random Responses in Heavy Haul Railways

Author:

Mao Jianfeng1,Yu Zhiwu1,Jiang Lizhong1

Affiliation:

1. School of Civil Engineering, Central South University & National Engineering Laboratory for High Speed Railway Construction, Changsha, Hunan 410075, P. R. China

Abstract

The systematic running safety assessment of railway bridges presents lots of challenges, one of which is estimating the uncertainty bounds of the structural responses of bridges under vehicle loads with multisource randomness. In this study, a probability safety assessment method is proposed for evaluating the uncertainty bounds of random time-history responses for the stochastic train-bridge coupled system. First, a refined probabilistic model for the train-bridge coupled system (TBS) in heavy haul railway is established with the multi-excitations of random track irregularities, random vehicle loads and stochastic structural parameters. The probability density evolution method (PDEM) is employed to obtain the solution of the time-varying probability transferred between the stochastic excitations and the output of the dynamic responses. Then, to establish a rapid and straightforward approach for the systematic running safety assessment of the TBS, the quantiles of the probability distribution are used to estimate the time-history uncertainty bounds of random responses of interest distributed in real probability functions. Case studies by the field test and numerical simulation are presented to verify and investigate the accuracy and reliability of the proposed method. The results show that the quantiles of the probability distribution proposed are suitable for the systematic running safety assessment of the TBS.

Funder

the National Natural Science Foundation of China

the Joint Foundation of the National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3