Dynamic Characteristics of Fluid-Conveying Pipes with Piecewise Linear Support

Author:

Li Zhan-Ying1,Wang Jian-Jun1,Qiu Ming-Xing2

Affiliation:

1. School of Energy and Power Engineering, Beihang University, Beijing 100191, P. R. China

2. Shenyang Aeroengine Research Institute, Aviation Industry Corporation of China, Shenyang 110015, P. R. China

Abstract

For the analysis of dynamic characteristics of fluid-conveying pipes with piecewise linear support, a fluid–structure coupling dynamic model based on the finite element method is proposed. A user-defined pipe element based on Euler–Bernoulli beam is developed for modeling the pipes, considering the dynamic flow conditions. A nonlinear spring element is utilized to model the clamp between the pipe and the base. The dynamic responses of the system are obtained through the direct time integration. The stiffness of the clamp support is investigated by the analytical method and the experimental method, in which it is found that the clamp stiffness is piecewise linear. For different pipe geometries the user-defined element model, analytical model and measurement data are compared. The results show high quality of the element developed in this paper. Finally, the dynamic characteristics of the pipe system with piecewise linear support subjected to base harmonic excitation are calculated and the effects of the system parameters on pipe behaviors have also been studied. As a consequence, the model proposed in this paper can represent the piecewise linear nonlinearity of the clamp support and be used conveniently to investigate the effects of the fluid–structure coupling on the system behaviors.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3