Affiliation:
1. Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia
Abstract
Web crippling is the major failure mode of thin-walled members when they are subjected to concentrated loading. Carbon fiber-reinforced polymer (CFRP) is found to be promising for strengthening metallic structural members. This paper reports improved web-crippling capacity of sharp-corner aluminum tubular sections: rectangular hollow section (RHS) and square hollow section (SHS), by attaching CFRP to their webs. Twenty four specimens were tested with four CFRP strengthening configurations applied on each of six different aluminum RHS and SHS sections. Significant increase in load-carrying capacity was obtained. Further comparison is made between CFRP strengthened aluminum tubular sections and cold-formed steel counterparts in respect of strengthening efficiency. Underlying mechanism of different failure modes and strengthening efficiencies of various strengthening configurations are discussed with the assistance of FEM simulation.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献