Experimental Study on High-Performance Buckling-Restrained Braces with Perforated Core Plates

Author:

Jia Liang-Jiu1,Dong Yang1,Ge Hanbin2,Kondo Kana2,Xiang Ping3

Affiliation:

1. Research Institute of Structural Engineering and Disaster Reduction, College of Civil Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China

2. Department of Civil Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku Nagoya 468-8502, Japan

3. Department of Structural Engineering, College of Civil Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China

Abstract

The compressive deformation is mainly contributed by axial compressive deformation and high-order in-plane and out-of-plane global buckling deformation for conventional buckling-restrained braces (BRBs). A novel type of all-steel BRBs with perforated core plates, termed as perforated BRBs (PBRBs), are proposed in this study, where shear deformation can occur in addition to the aforementioned deformations in a conventional BRB under compression. Experimental study was carried out using five specimens with different configurations of holes under cyclic loading. Stable hysteretic properties, high ductility, and energy dissipation capacity were obtained for the PBRBs. The effects of two parameters, i.e. the slenderness ratio of the chord and hole spacing factor defined as the ratio of the hole length to the hole spacing, on seismic performance of the specimens were investigated. The compressive deformation mechanisms of the PBRBs were further investigated through a numerical study. The compressive deformation was found to be composed of axial compressive deformation, flexural deformation owing to in-plane and out-of-plane global buckling, and in-plane shear deformation of the latticed core plate.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3