Shaking Table Test and Numerical Simulation on a Mega-Sub Isolation System Under Near-Fault Ground Motions with Velocity Pulses

Author:

Li Xiangxiu1,Tan Ping2,Wang Yao2,Zhang Ying2,Li Xiaojun3,He Qiumei1,Zhou Fulin2

Affiliation:

1. Institute of Geophysics, China Earthquake Administration, Beijing 100081, P. R. China

2. School of Civil Engineering, Guangzhou University, Guangzhou 510405, P. R. China

3. Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, P. R. China

Abstract

Theoretical analyses show that the velocity pulse characteristics of ground motions adversely affect structural responses of mega-sub isolation systems. This study presents an extensive shaking table test conducted to investigate the seismic responses of a mega-sub isolation system under near-fault ground motions with velocity pulses. Two steel frames were used as test specimens, representing aseismic and seismic isolation models. Two representative groups of actual ground motion records with velocity pulse characteristics were selected as inputs, along with their corresponding synthetic counterparts with the same acceleration spectrum, but without velocity pulses. Test results showed that near-fault ground motions with velocity pulses had an adverse effect on the seismic responses of the mega-sub structure system, especially on the displacement of the isolation layer in the isolation structure. Compared with the mega-sub isolation system, more nonlinear behaviors were observed in the aseismic system. Finite element analysis of the mega-sub aseismic and isolation systems was conducted by using SAP2000. Satisfactory agreement was observed between the simulation and test results, and the differences between them were discussed in detail. The obtained conclusions can provide a scientific basis and valuable reference for the seismic design and safety evaluations of mega-sub isolation systems under near-fault ground motions with velocity pulses.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3