On the division fields of an elliptic curve and an effective bound to the hypotheses of the local-global divisibility

Author:

Dvornicich Roberto1,Paladino Laura2ORCID

Affiliation:

1. Department of Mathematics, Università di Pisa, Largo Bruno Pontecorvo 5, 56127, Pisa, Italy

2. Department of Mathematics and Computer Science, Università della Calabria, Ponte Pietro Bucci, Cubo 30B, 87036, Rende, Italy

Abstract

We investigate some aspects of the [Formula: see text]-division field [Formula: see text], where [Formula: see text] is an elliptic curve defined over a field [Formula: see text] with [Formula: see text] and [Formula: see text] is a positive integer. When [Formula: see text], with [Formula: see text] a prime and [Formula: see text] a positive integer, we prove [Formula: see text], where [Formula: see text] is a generating system of [Formula: see text] and [Formula: see text] is a primitive [Formula: see text]th root of unity. If [Formula: see text] has a [Formula: see text]-rational point of order [Formula: see text], then [Formula: see text] for some [Formula: see text] and [Formula: see text]. For every number field [Formula: see text], we produce an upper bound to the logarithmic height of the discriminant of the extension [Formula: see text] for all [Formula: see text]. As a consequence, we consider a version of the local-global divisibility problem in elliptic curves over number fields, where the local conditions are known only for finitely many places.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Algebra and Number Theory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local–global divisibility on algebraic tori;Bulletin of the London Mathematical Society;2023-12-02

2. On 7-division fields of CM elliptic curves;European Journal of Mathematics;2023-06-22

3. Local-global questions for divisibility in commutative algebraic groups;European Journal of Mathematics;2022-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3