Affiliation:
1. Department of Mathematics and Statistics, Amherst College, Amherst, MA 01002, USA
Abstract
In 1920, Ramanujan studied the asymptotic differences between his mock theta functions and modular theta functions, as [Formula: see text] tends towards roots of unity singularities radially from within the unit disk. In 2013, the bounded asymptotic differences predicted by Ramanujan with respect to his mock theta function [Formula: see text] were established by Ono, Rhoades, and the author, as a special case of a more general result, in which they were realized as special values of a quantum modular form. Our results here are threefold: we realize these radial limit differences as special values of a partial theta function, provide full asymptotic expansions for the partial theta function as [Formula: see text] tends towards roots of unity radially, and explicitly evaluate the partial theta function at roots of unity as simple finite sums of roots of unity.
Funder
National Science Foundation
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献