Affiliation:
1. Department of Mathematical Sciences, Indiana University–Purdue University at Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, USA
Abstract
Explicit solutions of the cubic Fermat equation are constructed in ring class fields [Formula: see text], with conductor [Formula: see text] prime to [Formula: see text], of any imaginary quadratic field [Formula: see text] whose discriminant satisfies [Formula: see text] (mod [Formula: see text]), in terms of the Dedekind [Formula: see text]-function. As [Formula: see text] and [Formula: see text] vary, the set of coordinates of all solutions is shown to be the exact set of periodic points of a single algebraic function and its inverse defined on natural subsets of the maximal unramified, algebraic extension [Formula: see text] of the [Formula: see text]-adic field [Formula: see text]. This is used to give a dynamical proof of a class number relation of Deuring. These solutions are then used to give an unconditional proof of part of Aigner’s conjecture: the cubic Fermat equation has a nontrivial solution in [Formula: see text] if [Formula: see text] (mod [Formula: see text]) and the class number [Formula: see text] is not divisible by [Formula: see text]. If [Formula: see text], congruence conditions for the trace of specific elements of [Formula: see text] are exhibited which imply the existence of a point of infinite order in [Formula: see text].
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献