Galois realizations with inertia groups of order two

Author:

König Joachim1,Rabayev Daniel1,Sonn Jack1

Affiliation:

1. Department of Mathematics, Technion – Israel Institute of Technology, Haifa, 32000, Israel

Abstract

There are several variants of the inverse Galois problem which involve restrictions on ramification. In this paper, we give sufficient conditions that a given finite group [Formula: see text] occurs infinitely often as a Galois group over the rationals [Formula: see text] with all nontrivial inertia groups of order [Formula: see text]. Notably any such realization of [Formula: see text] can be translated up to a quadratic field over which the corresponding realization of [Formula: see text] is unramified. The sufficient conditions are imposed on a parametric polynomial with Galois group [Formula: see text] — if such a polynomial is available — and the infinitely many realizations come from infinitely many specializations of the parameter in the polynomial. This will be applied to the three finite simple groups [Formula: see text], [Formula: see text] and [Formula: see text]. Finally, the applications to [Formula: see text] and [Formula: see text] are used to prove the existence of infinitely many optimally intersective realizations of these groups over the rational numbers (proved for [Formula: see text] by the first author in [J. König, On intersective polynomials with nonsolvable Galois group, Comm. Alg. 46(6) (2018) 2405–2416.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constructing unramified extensions over quadratic fields;Involve, a Journal of Mathematics;2022-03-14

2. On Galois extensions with prescribed decomposition groups;Journal of Number Theory;2021-03

3. Unramified extensions over low degree number fields;Journal of Number Theory;2020-07

4. On number fields with power-free discriminant;Israel Journal of Mathematics;2020-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3