Reductions of Galois representations and the theta operator

Author:

Ghate Eknath1,Kumar Arvind2ORCID

Affiliation:

1. School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

2. Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Edmund Safra Campus, Jerusalem 91904, Israel

Abstract

Let [Formula: see text] be a prime, and let [Formula: see text] be a cuspidal eigenform of weight at least [Formula: see text] and level coprime to [Formula: see text] of finite slope [Formula: see text]. Let [Formula: see text] denote the mod [Formula: see text] Galois representation associated with [Formula: see text] and [Formula: see text] the mod [Formula: see text] cyclotomic character. Under an assumption on the weight of [Formula: see text], we prove that there exists a cuspidal eigenform [Formula: see text] of weight at least [Formula: see text] and level coprime to [Formula: see text] of slope [Formula: see text] such that [Formula: see text] up to semisimplification. The proof uses Hida–Coleman families and the theta operator acting on overconvergent forms. The structure of the reductions of the local Galois representations associated to cusp forms with slopes in the interval [Formula: see text] were determined by Deligne, Buzzard and Gee and for slopes in [Formula: see text] by Bhattacharya, Ganguli, Ghate, Rai and Rozensztajn. We show that these reductions, in spite of their somewhat complicated behavior, are compatible with the displayed equation above. Moreover, the displayed equation above allows us to predict the shape of the reductions of a class of Galois representations attached to eigenforms of slope larger than [Formula: see text]. Finally, the methods of this paper allow us to obtain upper bounds on the radii of certain Coleman families.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3