Arithmetic progressions in polynomial orbits

Author:

Sadek Mohammad1ORCID,Wafik Mohamed2ORCID,Yesin Tuğba1ORCID

Affiliation:

1. Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, İstanbul 34956, Turkey

2. Department of Mathematics, 1523 Greene Street, LeConte College, University of South Carolina, Columbia SC, 29208, USA

Abstract

Let f be a polynomial with integer coefficients whose degree is at least 2. We consider the problem of covering the orbit [Formula: see text], where t is an integer, using arithmetic progressions each of which contains t. Fixing an integer [Formula: see text], we prove that it is impossible to cover [Formula: see text] using k such arithmetic progressions unless [Formula: see text] is contained in one of these progressions. In fact, we show that the relative density of terms covered by k such arithmetic progressions in [Formula: see text] is uniformly bounded from above by a bound that depends solely on k. In addition, the latter relative density can be made as close as desired to 1 by an appropriate choice of k arithmetic progressions containing t if k is allowed to be large enough.

Funder

The Scientific and Technological Research Council of Turkey, TÜBİTAK

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3