A WEIGHT INDEPENDENCE RESULT FOR QUATERNIONIC HECKE ALGEBRAS

Author:

TERRACINI LEA1

Affiliation:

1. Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy

Abstract

Let p be a prime and B be a quaternion algebra indefinite over Q and ramified at p. We consider the space of quaternionic modular forms of weight k and level p, endowed with the action of Hecke operators. By using cohomological methods, we show that the p-adic topological Hecke algebra does not depend on the weight k. This result provides a quaternionic version of a theorem proved by Hida for classical modular forms; we discuss the relationship of our result to Hida's theorem in terms of Jacquet–Langlands correspondence.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Reference20 articles.

1. Sheaf Theory

2. F. Calegari and M. Emerton, Non-abelian Fundamental Groups and Iwasawa Theory, London Mathematical Society Lecture Note Series 393 (Cambridge University Press, Cambridge, 2012) pp. 239–257.

3. Congruences between modular forms and related modules

4. Annals of Mathematics Studies;Gelbart S.,1975

5. Galois representations into GL2 (Z p [[X]]) attached to ordinary cusp forms

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3