Affiliation:
1. Institute of Mathematics for Industry, Kyushu University, 744 Moto’oka, Nishi-Ward, Fukuoka 819-0395, Japan
Abstract
Kaplansky conjectured that if two positive-definite ternary quadratic forms have perfectly identical representations over [Formula: see text], they are equivalent over [Formula: see text] or constant multiples of regular forms, or is included in either of two families parameterized by [Formula: see text]. Our results aim to clarify the limitations imposed to such a pair by computational and theoretical approaches. First, the result of an exhaustive search for such pairs of integral quadratic forms is presented in order to provide a concrete version of the Kaplansky conjecture. The obtained list contains a small number of non-regular forms that were confirmed to have the identical representations up to 3,000,000 by computation. However, a strong limitation on the existence of such pairs is still observed, regardless of whether the coefficient field is [Formula: see text] or [Formula: see text]. Second, we prove that if two pairs of ternary quadratic forms have the identical simultaneous representations over [Formula: see text], their constant multiples are equivalent over [Formula: see text]. This was motivated by the question why the other families were not detected in the search. In the proof, the parametrization of quartic rings and their resolvent rings by Bhargava is used to discuss pairs of ternary quadratic forms.
Funder
Japan Science and Technology Agency
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献