Chebyshev polynomials and Galois groups of De Moivre polynomials

Author:

Girstmair Kurt1ORCID

Affiliation:

1. Institut für Mathematik, Universität Innsbruck, Technikerstr, 13/7, A-6020 Innsbruck, Austria

Abstract

Let [Formula: see text] be an odd natural number. In 1738, Abraham de Moivre introduced a family of polynomials of degree n with rational coefficients, all of which are solvable. So far, the Galois groups of these polynomials have been investigated only for prime numbers [Formula: see text] and under special assumptions. We describe the Galois groups for arbitrary odd numbers [Formula: see text] in the irreducible case, up to few exceptions. In addition, we express all zeros of such a polynomial as rational functions of three zeros, two of which are connected in a certain sense. These results are based on the reduction of an irrational of degree 2n to irrationals of degree [Formula: see text]. Such a reduction was given in a previous paper of the author. Here, however, we present a much simpler approach that is based on properties of Chebyshev polynomials. We also give a simple proof of a result of Filaseta et al.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3