A local Benford Law for a class of arithmetic sequences

Author:

Cai Zhaodong1,Hildebrand A. J.2,Li Junxian3

Affiliation:

1. Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395, USA

2. Department of Mathematics, University of Illinois, Urbana, IL 61801, USA

3. Mathematisches Institut, Georg-August Universitaet Goettingen, Bunsenstrasse 3-5, D-37073 Goettingen, Germany

Abstract

It is well known that sequences such as the Fibonacci numbers and the factorials satisfy Benford’s Law; that is, leading digits in these sequences occur with frequencies given by [Formula: see text], [Formula: see text]. In this paper, we investigate leading digit distributions of arithmetic sequences from a local point of view. We call a sequence locally Benford distributed of order [Formula: see text] if, roughly speaking, [Formula: see text]-tuples of consecutive leading digits behave like [Formula: see text] independent Benford-distributed digits. This notion refines that of a Benford distributed sequence, and it provides a way to quantify the extent to which the Benford distribution persists at the local level. Surprisingly, most sequences known to satisfy Benford’s Law have rather poor local distribution properties. In our main result we establish, for a large class of arithmetic sequences, a “best-possible” local Benford Law; that is, we determine the maximal value [Formula: see text] such that the sequence is locally Benford distributed of order [Formula: see text]. The result applies, in particular, to sequences of the form [Formula: see text], [Formula: see text], and [Formula: see text], as well as the sequence of factorials [Formula: see text] and similar iterated product sequences.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On digits of Mersenne numbers;Revista Matemática Iberoamericana;2021-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3