The group Gal(k3(2)|k) for k = ℚ(−3,d) of type (3,3)

Author:

Azizi Abdelmalek1,Talbi Mohamed1,Talbi Mohammed1,Derhem Aïssa2,Mayer Daniel C.3

Affiliation:

1. Department of Mathematics, Faculty of Sciences, Mohammed First University, Oujda, Morocco

2. 4 Rue Blida, 20100 Casablanca, Morocco

3. Naglergasse 53, 8010 Graz, Austria

Abstract

Let [Formula: see text] denote the discriminant of a real quadratic field. For all bicyclic biquadratic fields [Formula: see text], having a [Formula: see text]-class group of type [Formula: see text], the possibilities for the isomorphism type of the Galois group [Formula: see text] of the second Hilbert [Formula: see text]-class field [Formula: see text] of [Formula: see text] are determined. For each coclass graph [Formula: see text], [Formula: see text], in the sense of Eick, Leedham-Green, Newman and O’Brien, the roots [Formula: see text] of even branches of exactly one coclass tree and, in the case of even coclass [Formula: see text], additionally their siblings of depth [Formula: see text] and defect [Formula: see text], turn out to be admissible. The principalization type [Formula: see text] of [Formula: see text]-classes of [Formula: see text] in its four unramified cyclic cubic extensions [Formula: see text] is given by [Formula: see text] for [Formula: see text], and by [Formula: see text] for [Formula: see text]. The theory is underpinned by an extensive numerical verification for all [Formula: see text] fields [Formula: see text] with values of [Formula: see text] in the range [Formula: see text], which supports the assumption that all admissible vertices [Formula: see text] will actually be realized as Galois groups [Formula: see text] for certain fields [Formula: see text], asymptotically.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 5-Class towers of cyclic quartic fields arising from quintic reflection;Annales mathématiques du Québec;2019-10-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3