Affiliation:
1. Department of Mathematics, Faculty of Sciences, Mohammed First University, Oujda, Morocco
2. 4 Rue Blida, 20100 Casablanca, Morocco
3. Naglergasse 53, 8010 Graz, Austria
Abstract
Let [Formula: see text] denote the discriminant of a real quadratic field. For all bicyclic biquadratic fields [Formula: see text], having a [Formula: see text]-class group of type [Formula: see text], the possibilities for the isomorphism type of the Galois group [Formula: see text] of the second Hilbert [Formula: see text]-class field [Formula: see text] of [Formula: see text] are determined. For each coclass graph [Formula: see text], [Formula: see text], in the sense of Eick, Leedham-Green, Newman and O’Brien, the roots [Formula: see text] of even branches of exactly one coclass tree and, in the case of even coclass [Formula: see text], additionally their siblings of depth [Formula: see text] and defect [Formula: see text], turn out to be admissible. The principalization type [Formula: see text] of [Formula: see text]-classes of [Formula: see text] in its four unramified cyclic cubic extensions [Formula: see text] is given by [Formula: see text] for [Formula: see text], and by [Formula: see text] for [Formula: see text]. The theory is underpinned by an extensive numerical verification for all [Formula: see text] fields [Formula: see text] with values of [Formula: see text] in the range [Formula: see text], which supports the assumption that all admissible vertices [Formula: see text] will actually be realized as Galois groups [Formula: see text] for certain fields [Formula: see text], asymptotically.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献