CONSTRUCTION OF SELF-DUAL INTEGRAL NORMAL BASES IN ABELIAN EXTENSIONS OF FINITE AND LOCAL FIELDS

Author:

PICKETT ERIK JARL1

Affiliation:

1. Mathématiques, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

Abstract

Let F/E be a finite Galois extension of fields with abelian Galois group Γ. A self-dual normal basis for F/E is a normal basis with the additional property that Tr F/E(g(x), h(x)) = δg, h for g, h ∈ Γ. Bayer-Fluckiger and Lenstra have shown that when char (E) ≠ 2, then F admits a self-dual normal basis if and only if [F : E] is odd. If F/E is an extension of finite fields and char (E) = 2, then F admits a self-dual normal basis if and only if the exponent of Γ is not divisible by 4. In this paper, we construct self-dual normal basis generators for finite extensions of finite fields whenever they exist. Now let K be a finite extension of ℚp, let L/K be a finite abelian Galois extension of odd degree and let [Formula: see text] be the valuation ring of L. We define AL/K to be the unique fractional [Formula: see text]-ideal with square equal to the inverse different of L/K. It is known that a self-dual integral normal basis exists for AL/K if and only if L/K is weakly ramified. Assuming p ≠ 2, we construct such bases whenever they exist.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trace self-orthogonal relations of normal bases;Finite Fields and Their Applications;2015-09

2. Iwasawa theory and p-adic L-functions over ${\mathbb Z}_{p}^{2}$-extensions;International Journal of Number Theory;2014-10-29

3. Finding normal bases over finite fields with prescribed trace self-orthogonal relations;Finite Fields and Their Applications;2014-07

4. Self-dual integral normal bases and Galois module structure;Compositio Mathematica;2013-05-10

5. Construction of self-dual normal bases and their complexity;Finite Fields and Their Applications;2012-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3