Quadratic sequences of powers and Mohanty’s conjecture

Author:

Garcia-Fritz Natalia1

Affiliation:

1. Facultad de Matematicas, Pontificia Universidad Catolica de Chile, Campus San Joaquin, Avenida Vicuna Mackenna 4860, Santiago, Chile

Abstract

We prove under the Bombieri–Lang conjecture for surfaces that there is an absolute bound on the length of sequences of integer squares with constant second differences, for sequences which are not formed by the squares of integers in arithmetic progression. This answers a question proposed in 2010 by Browkin and Brzezinski, and independently by Gonzalez-Jimenez and Xarles. We also show that under the Bombieri–Lang conjecture for surfaces, for every [Formula: see text] there is an absolute bound on the length of sequences formed by [Formula: see text]th powers with constant second differences. This gives a conditional result on one of Mohanty’s conjectures on arithmetic progressions in Mordell’s elliptic curves [Formula: see text]. Moreover, we obtain an unconditional result regarding infinite families of such arithmetic progressions. We also study the case of hyperelliptic curves of the form [Formula: see text]. These results are proved by unconditionally finding all curves of genus zero or one on certain surfaces of general type. Moreover, we prove the unconditional analogues of these arithmetic results for function fields by finding all the curves of low genus on these surfaces.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3