Affiliation:
1. Facultad de Matematicas, Pontificia Universidad Catolica de Chile, Campus San Joaquin, Avenida Vicuna Mackenna 4860, Santiago, Chile
Abstract
We prove under the Bombieri–Lang conjecture for surfaces that there is an absolute bound on the length of sequences of integer squares with constant second differences, for sequences which are not formed by the squares of integers in arithmetic progression. This answers a question proposed in 2010 by Browkin and Brzezinski, and independently by Gonzalez-Jimenez and Xarles. We also show that under the Bombieri–Lang conjecture for surfaces, for every [Formula: see text] there is an absolute bound on the length of sequences formed by [Formula: see text]th powers with constant second differences. This gives a conditional result on one of Mohanty’s conjectures on arithmetic progressions in Mordell’s elliptic curves [Formula: see text]. Moreover, we obtain an unconditional result regarding infinite families of such arithmetic progressions. We also study the case of hyperelliptic curves of the form [Formula: see text]. These results are proved by unconditionally finding all curves of genus zero or one on certain surfaces of general type. Moreover, we prove the unconditional analogues of these arithmetic results for function fields by finding all the curves of low genus on these surfaces.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献