Affiliation:
1. Department of Mathematics, Ranchi University, Ranchi 834009, Jharkhand, India
2. Department of Mathematics, Central University, Brambe, Ranchi 835205, Jharkhand, India
3. Department of Mathematics, St. Xaviers College, Ranchi 834001, Jharkhand, India
Abstract
Let I denote the set of all irrational numbers, θ ∈ I, and simple continued fraction expansion of θ be [a0, a1, …, an, …]. Then a0 is an integer and {an}n≥1 is an infinite sequence of positive integers. Let Mn(θ) = [0, an, an-1, …, a1] + [an+1, an+2, …]. Then the set of numbers { lim sup Mn(θ) ∣ θ ∈ I} is called the Lagrange Spectrum 𝔏. Notably 3 is the first cluster point of 𝔏. Essentially lim inf 𝔏 or [Formula: see text]. Perron [Über die approximation irrationaler Zahlen durch rationale, I, S.-B. Heidelberg Akad. Wiss., Abh. 4 (1921) 17 pp; Über die approximation irrationaler Zahlen durch rationale, II, S.-B. Heidelberg Akad. Wiss., Abh.8 (1921) 12 pp.] has found that lim inf { lim sup Mn(θ) ∣ θ = [a0, a1, a2, …, an, …] and [Formula: see text]. This article forwards the value of lim inf{lim sup Mn(θ) ∣ θ = [a0, a1, …, an, …] and an ≥ 4 frequently}, a long awaited cluster point of Lagrange Spectrum.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献